Pseudo-riemannian Metrics in Models Based on Noncommutative Geometry

نویسنده

  • A. Dimakis
چکیده

Several examples and models based on noncommutative differential calculi on commutative algebras indicate that a metric should be regarded as an element of the left-linear tensor product of the space of 1-forms with itself. We show how the metric compatibility condition with a linear connection generalizes to this framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finsler Black Holes Induced by Noncommutative Anholonomic Distributions in Einstein Gravity

We study Finsler black holes induced from Einstein gravity as possible effects of quantum spacetime noncommutativity. Such Finsler models are defined by nonholonomic frames not on tangent bundles but on (pseudo) Riemannian manifolds being compatible with standard theories of physics. We focus on noncommutative deformations of Schwarzschild metrics into locally anisotropic stationary ones with s...

متن کامل

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

. D G ] 1 1 A pr 2 00 0 PSEUDO - RIEMANNIAN METRICS WITH PARALLEL SPINOR FIELDS AND VANISHING RICCI TENSOR

— I will discuss geometry and normal forms for pseudo-Riemannian metrics with parallel spinor fields in some interesting dimensions. I also discuss the interaction of these conditions for parallel spinor fields with the Einstein equations.

متن کامل

Noncommutative Rigidity

Using very weak criteria for what may constitute a noncommutative geometry, I show that a pseudo-Riemannian manifold can only be smoothly deformed into noncommutative geometries if certain geometric obstructions vanish. These obstructions can be expressed as a system of partial differential equations relating the metric and the Poisson structure that describes the noncommutativity. I illustrate...

متن کامل

On Noncommutative and semi-Riemannian Geometry

We introduce the notion of a semi-Riemannian spectral triple which generalizes the notion of spectral triple and allows for a treatment of semiRiemannian manifolds within a noncommutative setting. It turns out that the relevant spaces in noncommutative semi-Riemannian geometry are not Hilbert spaces any more but Krein spaces, and Dirac operators are Kreinselfadjoint. We show that the noncommuta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999